

Developing a Matrix Equation Solver for
the HAL-15 Hypercomputer®
(Research Proposal)

William S. Fithian
New Horizons Governor’s School Mentorship
at Langley Research Center, Hampton, Virginia

under the direction of

Dr. Olaf O. Storaasli
Analytical and Computational Methods Branch
Langley Research Center, Hampton, Virginia

For research mentorship conducted at the:

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199
__
Sept 2001-May 2002

Abstract

Current state-of-the-art software used by engineers to solve large systems of

simultaneous linear equations is limited in its use of parallel processing by interprocessor

communication time. This can become prohibitively expensive as the number of

processors used increases. A new, revolutionary, massively parallel FPGA computer, the

HAL-15, recently acquired by NASA Langley Research Center, will be used to create a

new matrix equation solver that will be tested for solution speed against current matrix

equation solvers. It is expected that new technology employed by the HAL-15 is very

likely to offer advances in matrix solution speed relative to current solvers.

Introduction

Many real-world phenomena can be modeled using systems of simultaneous linear

equations. In linear algebra, a system of such equations involving multiple variables can

be represented as a matrix equation (Hildebrand, 1965). For instance, the system of

equations:

3x1 + 4x2 – x3 = -8 (1)

2x1 - 2x2 + 3x3 = 15 (2)

6x1 + 9x2 + 2x3 = -6 (3)

is represented as the following matrix equation of the form Ax = b:

3 4 -1 x1 -8

2 -2 3 x2 = 15

6 9 2 x3 -6

where matrix A contains the coefficients of the equations. A is multiplied by vector x,

which contains the three unknowns in the equation. This multiplication yields vector b,

which contains the values on the right-hand sides of the three equations.

For an individual to solve the above system of equations for all three variables would

require the use of algebraic methods of adding and subtracting equations from one

another to isolate a variable, and then to substitute that variable into another equation

with only two variables. The value of another variable could then be found, and both

known variables could be substituted into any original equation to ascertain the value of

the final variable.

To illustrate the algebraic method, an individual would first multiply equation (2) by 3/2

and subtract it from equation (1) to get equation (2)', then multiply equation (3) by 1/2

and subtract it from equation (1) to obtain equation (3)':

 3x1 + 4x2 - x3 = -8 (1)

 0x1 + 7x2 - 5.5x3 = -30.5 (2)'

 0x1 - 0.5x2 - 2x3 = -5 (3)'

Next, the individual would multiply equation (3)' by 14 and add it to equation (2)' to

obtain equation (3)'' with only one variable:

3x1 + 4x2 - x3 = -8 (1)

 0x1 + 7x2 - 5.5x3 = -30.5 (2)'

 0x1 + 0x2 - 33.5x3 = -100.5 (3)''

The matrix now has a triangular form; that is, all coefficients under the diagonal are zero.

Triangular matrices are by nature easy to solve (Stewart, 2000). Now it is possible, by

dividing both sides of equation (3)'' by -33.5, to find that x3 = 3. If we substitute this

value for x3 in equation (2)', we can easily find that x2 = -2. Finally, substituting the

values of x3 and x2 into equation (1), we find that x1 = 1. Hence, the three values

obtained, x1, x2, and x3, are the solutions to the system of equations. They can be

represented as the following vector (one-dimensional matrix):

x1 1

x2 = -2

x3 3

A computer program would use this algorithm, called Gaussian elimination, to solve the

matrix (though it would not necessarily use the identical process), isolating variables by

eliminating terms of the matrix so that all the coefficients under the diagonal equal zero,

and the matrix is triangular. Next, the computer program would “backsolve” the matrix as

demonstrated above by working backwards, solving the last equation, which has only one

variable, first, and then subsequently substituting and solving for values up to the first

equation (Storaasli, 1996). This type of algorithm is known as “matrix decomposition”

because the computer algorithm actually decomposes the matrix into factors that can be

solved more easily. There are many varieties of this approach, and the most popular

decomposition algorithms are Cholesky Decomposition, Pivoted LU Decomposition, QR

Decomposition, Spectral Decomposition, Schur Decomposition, and Singular Value

Decomposition. However, all of these algorithms are essentially variations of the same

general method (Stewart, 2000).

Matrix equations occur in many fields of study, due to the fact that many different kinds

of problems require the solving of systems of simultaneous algebraic equations. Two

examples of such problems include structural analyses to compute the wing deflections

for a high-speed aircraft and to compute the failure modes of the Challenger space shuttle

solid rocket booster (Storaasli et. al., 1990). Systems of equations that accurately model

extremely complex real-world physical phenomena may contain not only three, but

thousands or even millions of equations and variables (Storaasli, 1996). Computer

programs are the only practical method to compute the solutions of such systems.

The GPS (General Purpose Solver) program developed at NASA Langley is a good

example of an efficient matrix equation solver. The GPS solver is used widely by

structural engineers in structural analysis. For one structural engineering analysis, GPS

calculated the structural deformation of a Ford Thunderbird automobile as a result of

frontal impact. The automobile was modeled using 253,574 equations, and 6.3 million

coefficients (Storaasli, 1996). Figure 1 shows the car model to illustrate just how

complex the application was (Anonymous, unknown date).

Fig. 1 - Ford Thunderbird Automobile

Current matrix-equation solvers utilize what is called “parallel processing” in their

algorithms to improve speed. With parallel algorithms, computers running the software

can work on multiple parts of a problem simultaneously by assigning different portions to

different processors working together to solve the matrix. Over the years, the fastest

equation solvers, including those made by NASA, have been the ones whose algorithms

were developed to capitalize on the full capabilities of parallel supercomputers

(Storaasli, 1996).

This type of parallel computation, however, has limitations. As the number of processors

increases, interprocessor communication time becomes very large and eventually is the

dominant time cost. Due to this factor, only a limited number of processors can be used,

limiting the number of operations that can be performed simultaneously. The most recent

NASA equation solver, the VSS (Vector Sparse Solver), reports its performance on a

maximum of eight processors (Storaasli, 1996).

However, NASA has recently acquired a new computer with the potential to perform

much speedier operations. This computer, the Star Bridge Systems HAL-15

Hypercomputer, offers hardware that can be programmed. The chips it uses are called

field programmable gate arrays (FPGAs), which can be reconfigured each time a user

desires to run a new problem to fit the special needs of that particular problem. FPGAs

are not brand new, but they are currently the method of choice for creating application-

specific integrated circuits (ASICs), machines specially created for a specific application.

These machines, which are inherently massively parallel and optimized at a hardware

level for their specific tasks (processes wired into the hardware of a system are usually

the fastest processes to complete), are capable of outperforming the best serial

microprocessors, both in speed and in space used on the chip (Anonymous, 2001).

However, according to the Star Bridge Systems web site, "it usually takes years of

education and practice to master the art" of programming them (Anonymous, 2001).

Star Bridge Systems' technological breakthrough lies in the new Viva programming

language, which greatly simplifies the task of programming application-specific

machines onto FPGAs, bringing it within the reach of the common programmer. This

language allows a user to program complicated algorithms at a high level of abstraction

in a highly intuitive, graphical user interface (GUI) environment. When the user is

finished programming, Viva's compiler then configures the hardware of the computer to

perform the task specified by the user, translating the high-level mathematical language

of the user program into low-level bit operations which the user need never worry about.

Because the user is free from these low-level considerations, he can concentrate on high-

level mathematical algorithms and program much more complicated processes much

more easily than he could have done before (Anonymous, 2001).

The image on the next page shows the Viva environment in color. The user can simply

think about where the data should go and what operations should be performed on it in

each step. By simple pointing, clicking, and dragging of the mouse, tubes are created

carrying the data into and out of boxes, which are abstracted representations of functions.

When the "play" icon is clicked, Viva programs the FPGA chip or chips to create a

machine optimized for the user's task; this machine can perform as many operations in

parallel as the FPGA chip has space, potentially hundreds per chip – and computers may

contain multiple FPGA chips (Anonymous, 2001).

This new massively parallel potential raises the possibility of an even faster matrix

equation solver than any previously written. Consider, for instance, a one thousand by

one thousand (or, more generally, an n by n) matrix. A massively parallel computer

could achieve the first column of zeros for every row of a matrix simultaneously - this

method could be completed nine hundred ninety-nine (n-1) times faster than an algorithm

which achieves each row’s first zero sequentially. The full triangularization of the

matrix, using the parallel algorithm, could be completed five hundred times (n/2) faster

than using the sequential algorithm.

Therefore, with this greatly improved degree of parallel capabilities, it seems likely that a

matrix equation solver programmed on the HAL-15 could potentially be much faster than

the current state-of-the-art solvers. Such a development would be of great practical use.

In addition, it is of interest to the experimenter because it involves the use of computer

programming to solve complicated mathematical problems.

Methods and Materials

Star Bridge Systems' new Viva programming language will be used to create a matrix-

equation solver on a HAL-15 computer acquired by NASA. To begin, several very

simple functions which perform basic vector operations were programmed in Viva for the

dual purpose of allowing the experimenter to become familiarized with the language and

creating a basic library for use in future, larger programs. These small programs

included, among other functions, functions to find a dot product of two four-element

vectors, to multiply a four-element vector by a scalar value, to split a four-element vector

into its elements, and to collect four numbers into a four-element vector. These programs

all had very simple algorithms and were well-suited to learning the basics of the Viva

language, which was new to the experimenter.

These and other smaller functions will be combined with Viva basic library functions to

create a prototypic matrix-equation solver capable of solving, by Gaussian elimination

(the algorithm reviewed in the introduction), a four-by-four matrix given a four-element

right-hand-side vector. This prototypic program is nearly complete. The figures on the

next three pages show the two major components of this program - one function which

triangularizes the matrix and another which backsolves to attain a solution. Flow charts

of the top-level program, the matrix triangularization program (nearly finished), and the

backsolution program (finished and tested) are included as Figures 2-4. Of note is that

the Viva programs which describe these functions are themselves very similar to flow

charts.

Figure 2: Flow Chart of Top-Level Program

Input Matrix M and Right Hand Side R

Triangularize M

Backsolve for unknown values

Figure 3: Flow Chart of Triangularize

Figure 4: Flow Chart of Backsolve

After the prototype is complete, the program will be generalized to handle an arbitrary-

sized matrix, and eventually an arbitrary-sized large matrix (i.e. hundreds or thousands of

equations). This process will probably require some creative use of recursion to

represent the matrices and the functions which operate on them, but any prohibitively

intractable problems are unforeseen at this point. Finally, programs will be written

Input Matrix M and Right Hand Side R

Find multiplier mr for each row r:
mr = M11/Mr1

Multiply entire row (including
corresponding value in R) by -mr and
add to first row to obtain new row r

with Mr1 = 0

Remove first row and column of system
and repeat process for reduced matrix

until 1x1 matrix is reached

Input Matrix M and Right Hand Side R

Solve for unknown value of current row
(start with last row)

Substitute values found for previously
solved-for unknowns in next row up

Move up one row in matrix until top
row of matrix is reached

(unless someone at NASA has already written them by then) to enable the program to

read in its matrices from files of the type NASA uses to represent them.

Throughout the designing of the program, optimization of the program with respect to

computation and compilation speed will be sought. In particular, old and new methods

for eliminating unnecessary multiplications and additions of zeros will be investigated to

speed up computation for matrices whose elements are nearly all zeros.

As a final step, the solution time for the new matrix equation solver developed in the

Viva language for the HAL-15 will be tested against the current NASA state-of-the-art

equation solver to determine whether a significant speed-up has been attained.

Schedule:

December 4, 2001 - Proposal will be turned in.

December 2001 - February 2002 - Prototypic program will be generalized for use on

large matrices as defined by files in use by NASA.

February - April 2002 - Program will be tested against current state-of-the-

art matrix-equation solvers and modified to achieve

maximum computation speed.

May 2002 - Oral Presentation will be prepared and delivered.

Expected Results

Due to the massively parallel capabilities of the new technology, it is expected that

eventually a matrix equation solver using Viva software to program FPGAs will

outperform current state-of-the-art solvers using microprocessors. However, the solver

programmed by the experimenter in Viva will probably not take full advantage of all the

HAL-15’s capabilities due to limitations of time and expertise of the programmer. Still,

it is a possibility that the new Viva solver will be the fastest ever, in a best-case scenario.

No matter what, however, a great deal will be learned by the experimenter about linear

algebra, parallel computing, and computer programming in general.

Conclusions/Relevancy

If the new Viva matrix equation solver is faster than current solvers, an inevitable

conclusion will be that the technological breakthroughs made by Star Bridge Systems

have indeed made possible faster matrix equation solvers than have ever been created

before. However, a failure to create a faster matrix equation solver will not be

interpreted as a failure of the HAL-15, nor will it discredit the potential of the new

technology involved. If the new Viva solver is the fastest equation solver ever written, it

will be very relevant to engineers who will be able to solve matrices faster than ever

before and it will also imply that the HAL-15 has great potential in many mathematical

and engineering applications.

Acknowledgments

I would like to thank my mentor, Dr. Olaf Storaasli, for generously sharing his time,

expertise, and enthusiasm with me. I would also like to thank Richard Loosemore and

Samuel Brown at Star Bridge Systems for their help with the Viva language, and I thank

NASA and Star Bridge Systems for the privilege of working with this exciting new

technology. Finally, I would like to thank my mother for helping me with editing.

Literature Cited

Anonymous. Unknown date. Equation solution performance records for automobile
model.
<http://transit.larc.nasa.gov/csb-www/AUTO.html>

Anonymous. 2001. Star Bridge Systems Web Site.
<http://www.starbridgesystems.com>

Hildebrand, F.B. 1965. Methods of Applied Mathematics. Dover Publications, Inc., New
York. 362 p.

Stewart, G.W. 2000. The decompositional approach to matrix computation. Computing
in Science and Engineering January/February 2000: 50-59.

Storaasli, O.O., Nguyen, D.T. and Agarwal, T.K. 1990. A parallel-vector algorithm for
rapid structural analysis on high-performance computers. Hampton, VA: NASA Langley
Research Center. NASA Technical Memorandum 102614.

Storaasli, O.O. 1996. Performance of NASA equation solvers on computational
mechanics applications.
<http://techreports.larc.nasa.gov/ltrs/papers/NASA-aiaa-96-1505/olaf.fm5.html>

